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1. Introduction., Consider sequences of independent random variables

(X 1<i<n, n>1} with continuous cumulative distribution functions

ni’
(cdf). A broad range of statistical tests based on ranks lead to the study

of simple linear rank statistics of the type

(1.1) G R e (R

=1 BRE 0Nt
where Rni is the rank of Xni among (an, X o5 "ty Xnn); {Cni: 1<3%n)
and [ah(i): 1< i< n) are sets of known constants. One usually assumes

an(i) (scores) to be generated by a known function ¢: (0, 1) —> R in

either of the following ways:

o(1/(n+1)),

(1.2) an(i)

(1.3) a (i) = E cp(Ur(li)), 1€i<n,

(1)

n

where U is the i-th order statistic in a random sample of size n from a
uniform distribution over (0, 1).

Hdjek (1968) obtained asymptotic normality of the statistic Sn defined

in (1.1) with suitable conditions on Cni and the score generating function .
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however, there exist situations where tne Cni can no longer be regarded as
constants, being themselves random variables, known as '"stochastic predic-
tors." Corresponding to such stochastic predictors (and the sequence
[Xni}), we define a stochastic linear rank statistic by

n
3 o Z O a (R )
wherein all the quantities have already been defined,

This paper is devoted to the study of asymptotic distribution theory
of the statistic Tn' Thus results of H4jek (1968) are a special case of
our results for Tn' However, as opposed to Hdjek, we obtain a family of
limit laws which are weighted averages of the normal and degenerate to the
normal in extreme cases, Thus the results are also of independent interest,
In view of the rather complex nature of the conditionings involved in our
analysis, it seems rather doubtful that H&jek's projection technique can be
used in a situation as general as ours.

Although we take Cni to be stochastic, it is clear that they cannot be
entirely arbitrary. The restrictions which we shall impose on them are of
two types. Firstly, they are concerned with their megnitudes and growth

rates of certain fractional moments, stated explicitly in the theorems,

Secondly, they are concerned with the measure theory and dépendence among
themselves and with the Xni' Clearly, there is considerable latitude in
the choice of the dependence structure and one can weaken one set of

conditions by strengthening others, We shall, however, assume only that

i i . o =
the Xni are independent for a given set (Cni 1<i<n) (gn). (Condi s Secten
tional independence.) This situation is realized when, for example, the - g
sequence {(Xni, Cni)} is composed of independent vectors. Even when they
are exchangeable, it can be expressed in present framework, BY S ——
DISTRIBUTION/AVAILABILITY CODES
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We denote by F | the cdf of X . given C . (1t is to be noted that F .
ni ni & ni
can depend upon,gn and is, therefore, a random variable, but Fni is a.s, a

distribution function,)

In view of the rather delicate nature of the conditioning needed in
our proofs, it is desirable to set down the measure theoretic framework
involved in our study. All measures considered are, of course, probability
measures, These considerations are rather crucial in the proof of
Proposition 3.2,

Let (Q, G, P) be a measure space rich enough to admit families of
random varisbles ¢ and X , for n > 1. Let (0.; Bi), i=1, **+, nbe
measure spaces with respect to which (Zi, Ei)’ i=1, -++, n are measurable,
The product measurable space (Ql Xooen oy Bl X o0 X Bn) is the space of
points (wl, siiei] wn) together with the minimal o-field over measurable
rectangles Bl X o X Bn’ where Bi € Bi: i=1, .-+, n, Then the product
measurable space (HQn, nﬁn) is the space of points (wl, Wns seey. w; € Oi,

and the minimal g-field over the measurable cylinders (Bl X co° X Bn) X

-]
il Qk, n=1, 2, ... denoted by GO. Clearly GO (=675
k=n+1

Since we shall be conditioning with respect to,gn, we assume that the
conditional probabilities for the zn given‘gn are all measurable with
respect to ﬁn. We also assume that the family {Qn} determines a family

[Qn] of regular conditional probabilities. That is to say, for each fixed

n
w, € Qi, e dy o5, pald, B €I R Qh(wl’ AL N Bn) is a.s.(P) a
n
measure on | Bk; and for a fixed Bn’ a measurable function in
Wi ottt wn-l’ for all n,




2. Theorems. We now turn to the statements of our theorems, Dencte

n

81 Ho=1" T F @)
X n o ot X
n i
@2) ot = n M B o B 60, = [ glit)acn.

(It is to be noted that H(x) may depend upon ,g'n.)

Theorem 2.1 (Representation Theorem). Let the scores an(i), 1<4<nbd

given by (1.2) and let the following conditions be satisfied.

(2.3) max |C .| = 0 (1)
1<i<n P
(2.4) I(p(i)(t)l < K{t(1 - t)}é'i'l/z, 0<t<1l; i=0, 1 for some

K > 0 and some 0 < § < 1/2,

Then
=1 _
(2.5) T =k, +n Z oy ., )+ D
i=1

where, for a given En s
(2.6) D —> 0 in probability (conditionally) as n => =,

iy = S
(2.7) ¥(X 45 8 ) =n jZ:Jl (an =) J_@ (xey] - F (e (H(y))

F
d nj(y)

and
(2.8) 1[x<y] = 1 if x <y, and O otherwise.

Furthermore, for a given ,gn, the conditional distribution of Tn < By

is asymptotically normal, provided the corresponding value of the conditional

variance is finite and nonzero.




Theorem 2,2 (Main Limit Theorem)., 1n addition to the hypothesis of

Theorem 2.1, let the following conditions be saticfied.

There exists ana < 1/2, 0 < a < a(d) = 2§(1 - 26)'1, 0< 6§<1/2

such that

(2.9)  E( max |C_ } = o(a™);

and the family [gm} determines a family {Qn} of regular conditional

probability measures in the sense described in section 1. We then have in

the representation (2.5),

(2.10) D —> 0 in probsbility (unconditionally) as n —> + @ and
(2.11) Tn has a limit distribution if and only if the joint distribution

S ; 2
of B and the conditional variance o ('gn)’ say Wn( , ) converge

weakly to a proper distribution function W(-:, °),

Furthermore, this limit law is weighted normal $,, whose characteristic

function is given by

22
(2.22) g w = [ em(iwa gy(x) = [ em(im - L), o).

It must be noted that in the joint distribution of (pn, gi(_gn)), it may
be necessary to normalize by by a sequence 'yn of constants (say ‘yn = E pn) 2
Since this does not affect our analysis (we could consider Tn - 'yn), we

shall disregard it,

Theorem 2,3 (Normal Convergence). Under the conditions of Theorem 2.2,

the limit law of Tn is normal if and only if the law W(°:, °*) is degenerate
2 2
at some (wys 05), 0y # O.
It is obvious that in general the form of the limit law given by

(2.12) can be quite complicated, It is possible to get a clearer idea of




"

the kind of distributions which arise by looking at Tn - un. (Note that in
the unconditional case by is stochastic,) With this point in view, we give

the following corollary and an example,

Corollary 2.1. Under the conditions of Theorem 2.2, Tn - B has g limit law

2
if and only if the conditional variance cn(gn) converges in distribution to

a proper random variable with distribution W(+). The limit law is then

symmetric weighted pormal &, (say) with the characteristic function

g = | em(- 1/2 wo?) (o).
0

(2.13)

2
Example, In Corollary 2.1, let ¢ have an gxponential distribution, Then

® e e B
gw<u>=Joexp ke

Inversion of &y by the Fourier-Stieltjes inversion formula yields the

distribution QW with the density
d -1/2 1/2
(2.14) = Qw(x) =2 / exp(-2 / |%]), ~e<x<+ e,
Thus, the form of QW can differ quite drastically from the normal.

Remark, We note a "nonuniqueness" in our main results, (Theorem 2.2;
Corollary 2,1,) In contradistinction to most of the limit theorems in
statistical theory, we do not have a single limit distribution but a family
of limit laws "parametrized" by the distributions W( ). It would be
interesting and valuable to know what all distributions can arise, Equiva-
lently, what distributions can be characterized at weighted normal,

Proofs of these results are given in Section 3, Similar results
hold when an(i) are given by (1.3). Our conditions appear to be broad
enough to cover most practical situations. But the condition (2.9) can

probably be weekened,

Ad




. Frroofs of the Theorems: We introduce the following processes:

n

1

(3.1) ¢ (x) e = E'[Cn(x)J

1231 “ni I[Xni L

=) 4
o= 3 , H(x) = E'[H (x)]
% o1 gy S n

(3.2)  H (%)

E'[+] denotes E[(')lEn].

The following stochastic inequalities are obvious:

1/2
(3.3 o (0| <a = o |5 (x)
and
(3.4)  |c®] <n® max |c |H(x) a.s.
lSlSn nil

Since the conditioning is with respect to gn, inequalities and bounds
hold a.s. Also note that H(x) and Fni(x) are a,s. distribution functions,
For the sake of brevity, we shall suppress the notation a.s.

We regard Cn(x) as a random measure which assigns a weight Cni to the

point X = Xni'

Proof of Theorem 2,1, From (1.2), (1.3) and (3.3), it follows that

R .o nH (x)
g2
(3.5) T -aP T, o -] o—H) acx)
i=1 -0
3
= pn+B1n+B2n+ ElDin

where M is given by (2.2),

(5.6) By =]  elHx)ALC,(x) - o(x)]

-0

(1) By e | B0 - KGO le [H(x)Jac(x)

-0




(3.8) D_=2x | H(x) g'lH(x)]C (x)

(3.9) D= | [H(x) - Hx)Ie' [Hx)] dlC (x) - C(x)]

n H (x)
(3.10) D, = J [‘p[n+l n(x)] - olH(x)] - (—=— n+l - H(X))‘P'[H(x)]}dcn(x),
- 3n
We shall first show that un is well defined, 5
C . ® 1/2 e '
ol = 12 28] " qtutoda £, ] < 0% mex o, | [ otio]an

Since the integral is finite (by (2.4)), T is a proper random variable,

Integrating B2n by parts, we obtain

(3.11) By, = () - HE ()] 2 - | B'(xalr (x) - K]
where
x
B*(x) = J o' [H(y)Jac(y), Xy chosen arbitrarily such that H(xo) ¥ 0,
X
0

Let B(x) = [H (x) - H(x)JB"(x). Then

X
18| = n/2lH () - 1) |0 ) | ol Jac(y)]

*o

<0,(1) nl/2|H (x) - H(x)| |J o' [H(y)lan(y)]|,
o

<0 (W2 |r (%) - KGR - 1)) M2k

Now by Puri-Sen (1971), given €, §' > 0, there exists a constant Cle, "),

such that

ot |H (x) - H(x)| :
- > C <
* {n(x)(l-n(x)>)l/2‘6 e




G

Choosing §' < §, it follows that
Bx)| <K - 0 (1) (H)L - Hx) D™ e, 6') =0

as x » + o for a fixed L Unconditional convergence follows from
Proposition 3.2 given a little later, Thus from (3.6), (3.7), and (3.11),
we note that

© ©

B+ By = | glH(MIAC (x) - C(x)] + J._,, o' [H(x)1[H_(x) - H(x)]aC(x).

-0

Integrating Bln by parts and collecting the coefficients of

[I[X e A Fni(.)]’ we obtain the desired representation (2.,5). Let now
ni=

3
C, = C. be given. Then by Puri-Rajarem (1977), it follows that 22 D. = O
=1
in probability, provided max |C .| is bounded, which by assumption (2,3)

1<i<n

remains so with probability close to 1. The unconditional convergence is
established in Proposition 3.2, To prove conditional normality, we verify

the Liapunov condition, For simplicity, let us denote

(3.12) 1= n"1/2 VX S

For conditional normality, it suffices to prove

n

(3.13) lim E'|Y ,|2(lﬂ1) = 0 for some a > O,
n=o i=1 o

Denote

(3.14)  E(- |g) = B'().

We obtain more than (3.13) in the following lemma, It will be needed

to obtain the unconditional distribution of Tn‘




Lemma 5.1. Under the assumptions of Theorem ena

n

(3.15) Z E'|Y
i=1 - 1<i<n

- 0(n™%) max |Cni|2(l+a) a.s.

for each @, 0 < a < a(s) = 26(1 - 26)-1, where § is given in (2.4).

Proof. We shall estimate the orders of magnitude for the terms of Bln and

B

on separately, and then use the Cr-inequality. Recall that

. n
(3.16) By = | T0als () - H) =0Tt D) - BE))
0 i=

Take 0 < @ < a(8). Then 2(1 + a@)(s - 1/2) > -1, Next

a7 B EBst )R
5=1 nt

-] X

|| o't 10 P a F_ ()

Slrl-2(1+oz) §>J
izl - X

0
n . @ X
<ofiviy e an e Y ] e e P
i=1 1<i<n - xg

aF . (¥)

n = :
< max |C |2(l+a)n-(l+a) -2 J (|pH(x)]]| + |¢[H(Ko)]|}2(l+a)

TiEnm = i=1 Y e
aF . (¥)
- mex e 1P [ (lotr) 1] + |oli(x) 1M an(x)
i<n -0

IN

p Ok mat o, 1P [T () (1-1(0)) P (822 gy
1<i<n -

2(1+x)

O(n-a) max |C |
1<i<n

, since the integral is finite and

[ H( xo) ] is constant,




- * 2( 1+ * 2 \
Since E'|B (Xni)| (14e) > |E’B (Xni)‘ (dact) a.s, we can use the

Cr-inequa.lity for (3.16), Similar arguments hold for Bln’ and an applica-
tion of the Cr-inequality yields the estimate (3.15). The Lemma is proved,

Remark: Since max |C .| is O (1), it is obvious that the (conditional)
Y = P

asymptotic normality holds for each uniformly bounded set of values C ,
~n
provided the corresponding value of the conditional variance converges to a

finite, nonvanishing constant.

Proof of Theorem 2.2. We shall obtain a generalization of Theorem A,

page 381, Loéve (1963). Let

2
c’ni('(‘:'lrl) & Va'I'(Ynil'g'n)

and
(3.28) U, = N s T
‘ Sl T e J.@ p(H(x) d F . (x).
It is easily verified that
n
(3.19) T, = 1?31 Uy*D =0 + D , say.

To obtain the asymptotic, unconditional distribution of Un’ we use the
comparison theorem on pages 375-376 of Loéve (1963). Choose random variables

Vni’ conditionally normal, with

1 - 2
Letting
n
: ‘ Vi = St Viey
l S

we shall compare Vn and Un’ taking S=R, £ = 0, m= 2,

For j < m, we have E'U;)L_.L = B Vgi. For higher moments of vni’ we shall

bound them by the moments of Vni as follows,




A b il vt o isithg §

e

2
Since V are conditi r i P JLE
Since V . are condi ionally normal with parameters by and o . (’*'r:)’

given ¥ > 0,

2 2
E'|V .| e o™ (E|V ., = .| ey | -|2+)') a.s.
ni = ni ni ni
It is easy to check (by normality) |
2+y 2+y
1 s -
" |Vni p'nil S (cni(gn)] BB

Consequently, we have

; 2+Y 7 2+Y
(3.20) EV |7 < CEU,| a.s.

Next, in the comparison theorem, since ¢ = 0, S = R, we need only
verify conditions (iii and (iv), (Loéve, p. 376).
e i (el ot o 1 :
Note that J X dpni(x) = J x dqni(x), j=1, 2 wvhere pz;i is the

conditional distribution of U ., and q!; that V .. Hence
ni i ni

2y | xJ(ap! (%) - da’; ()] = o.

Choose in condition (iv) of the comparison theorem, 6§ = 20 < 1, @ given

by (2.9). Using the bound obtained in (3.20), we have

n g
.Zl G JR |x|2+2°‘|dp;li(x) - dqp; (x|

n
B(i1+¢) 2 E'|Uni]
i=1

2(1+a)}

IA

12(4)) o(n )

L+0)E g
(+){lgiagn|m

-0, a5 n~" + o
\

by condition (2.9), lemma (3.1) and the C,-inequality.

n n
Thus 2, U, and PR Vni are asymptotically equivalent in law, Next,
i=1 i=1

n
to obtain the characteristic function of Vn e 2 Vn
i=1

i’




. fn(u) = E exp{iu Vn] E E' exp (iu Vn]

£ 2 2
E exp (1uun--;—u g (€)),

Let Wn(-, .) be the joint distribution of (p.n, on('gn)) : ‘
We then have

(3.21) £ () = J exp (iu p - % w? 02) d W (w, 5

which by continuity theorem converges to a characteristic function fw(u)

(say) if and only if Wn(-, *) converges weakly,

It remains to show that the remainder terms all converge in
probability unconditionally. Recall that conditional convergence has been
established in Theorem 2.1. Thus the proof of Theorem 2,2 will be complete

if we prove the following:

Proposition 3.2. Let (Qn] be the family of conditional probabilities
determined by {gn] . Let this family be regular with respect to (Q, G). Let

iti i1 > 6 - o
the conditional probability P(IDnl  |g,) = o. _I_f_‘llélzinlcni, Op(l),

then P(an| > §) — O unconditionally.

' Proof., Let Vn be the probability measure determined by 'gn Then

(3.20)  B(|p ] >8) = | B(|D | >0 lg) av .

Now, given € > O, there is a constant K such that P( max Icnil >K) <e.

1<i<n

Now

J ®(n | > 8| )av_= | B(|D | > 8|C )av,

| <X]

[ max |C .| <

I<i<n




+ [ B | > 6lg,) v,

[ max |C_.| >K]
cicn ™

<|®(p | >8|g) av +e

[ max |C .| <KJ.
icien

Setting

(3.21) £ 4= P(|Dn| > 8 |gn) I

>0 [ max Icnil < K]

1<i<n

and noting that lim fn 5 = 0 a.s., it suffices to prove that
nNeso 2

lim jf av_= 0.
n,d n
Since [Qn] forms a family of regular, conditional probabilities in

the product space, An € ﬁl X oo X Bn
vn(An) i J Q‘l(dwl) .J QQ(wl’ dw2) I Q'n(wl’ AWl dmn)I(An)'

Then by a theorem of Ionescu-Tulcea (1949, 50), (see also Loeve (1963),
p. 137), there is a probability measure Q on Gy» determined by {Vn} , and

so by the generalized Fatou Lemma, limf f 5 dv_ < f lim sup T dqQ =
N By & N n,d

The proof is complete,

Clearly, the proof of Theorem 2,3 is trivial, Proof of Corollary 2

follows along similar lines, by a direct application of Theorem A, page 381

of Loéve (1963).

14
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4, BSome Extensions: We first obtain an extension of our results of

Section 2 when the scores are given by (1.3).

Proposition 4.1: Let the hypotheses of Theorems 2.1 and 2,2 be satisfied.

but with the scores now given by (1.3). Then the conclusions of

Theorems 2.1, 2.2, and 2.3 as well those of Corollary 2,1 hold,

* -1/2 B . : ;
Proof. Denote T = n E? Cni an(Rni) with &n(l) given by (1.3). We

have to prove

*
(4.1) P T = 0 in probability.

Since max |C | = 0 (1), it suffices to prove that
I<i<n | M o

*
(4.2) P(|T, - T | >8|C) =oO.

Then Proposition 3.2 entails (4.1). But (4.2) is an immediate

consdquence of Puri-Rajaram (1977), whenever max ICni' is bounded, which
1<i<n

is valid on a set of probability close to 1.

We now indicate a multivariate extension of some of our results,
Usually extensions from the univariate to multivariate situations are fairly
straightforward in view of the Cramér-Wold criterion. Since our limit laws
can be nonnormal, it is not immediately obvious how Theorem 2.2 would extend
in a multivariate setup. We limit ourselves to an extension of Theorem 2,3,

Letlxﬁi = (Xﬁiz cee, Xi?), n>1l,i=1, ***,n be a sequence of
p-variate random vectors (p > 1), with continuous cdf,'s Fni(g), 1€s<€n,
X € Rp. Let [Cni: 1 < i< n} be the sequence of stochastic predictor

variables, As before we assume the vectors Zni to be conditionally

independent, given (Qn). Consider now the statistics T = (Tﬁlz s Tip)),

il - |




Tz(1V) = n'l/2 iZijl C i a;\)) (Ri\;)) where the aiv)(i)'s are given as in
Section 1, and satisfy the assumptions of Theorem 2.1, Clearly, each
Tﬁlv) - p,(V;’ can be expressed as a partial projection on Z.r(x\)) and E/n by
Theorem 2.1, Let the conditional variance-covariance matrix of

e s g o 1 P 50 e

n
v (?fi\))’ L) - £ i§1 ‘vr(l\i)) (xr(l\i))’ £.) b gven by Zo(C ). Tet
p_(\’), w(v) (*, *) be defined in the usual manner (cf., Theorem 2,1). Then

we have

Theorem 4.1, Let 7 and gn satisfy conditions of Theorem 2,1 and let

- e h : T W :
lim En (~n) EO where % is a positive definite (nonrandom) matrix. Then

N—s
(,'1,1n - E'-n) is asymptotically normal with mean O and covariance matrix Z“b

The proof follows by using Theorem 2,1, Cramér-Wold criterion, extended

cr-inequality and Lemma 2.1,
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